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Abstract. The quantum corrections to the counting of statistical entropy for the 5+1-dimensional extremal
black string in type-IIB supergravity with two observers are studied using anomalous Wess-Zumino actions
for the corresponding intersecting D-brane description. The electric-magnetic duality symmetry of the
anomalous theory implies a new symmetry between D-string and D-fivebrane sources and renders opposite
sign for the RR charge of one of the intersecting D-branes relative to that of the black string. The electric-
magnetic symmetric Hilbert space decomposes into subspaces associated with interior and exterior regions
and it is shown that, for an outside observer, the expectation value of a horizon area operator agrees with
the deviation of the classical horizon area in going from extremal to near-extremal black strings.

A startling consequence of the D-brane description of soli-
tonic states [1] is the ability to microscopically count the
statistical entropy of black holes in string theory. By re-
alizing that intersecting D-branes are the weak coupling
limit of certain five-dimensional supergravity black hole
solutions and carry the same Ramond-Ramond (RR)
charge as that of the black hole, the counting of quan-
tum states from BPS-saturated D-brane bound states can
be shown to agree with the Bekenstein-Hawking formula
(proportional to the horizon area) for the entropy [2,3]
(see [4] for a review). In this letter we shall study quan-
tum corrections to a class of classical black hole solutions
in the D-brane description by considering the points of
view of two observers where one is the observer outside
the horizon and the other is a “superobserver” who, as ad-
vocated in the proposal of black hole complementarity [5],
sees both exterior and interior regions of black holes (i.e.
the Hilbert space of both exterior and interior regions is
relevant). A natural way to understand the black hole/D-
brane correspondence is to identify a quantum area oper-
ator on D-brane Hilbert space whose classical limit yields
the horizon area of the extremal black hole in N = 8 super-
gravity [6]. The five-dimensional black hole can be viewed
as a six-dimensional black string which winds around a
compact internal circle. The horizon area of the extremal
black string and the expectation value of the area operator
agree only in the limit of large winding number [6]. In an
effort to find the location of the quantum states respon-
sible for entropy counting, it was shown in [7] that the
D-strings and D-fivebranes carrying the same RR charges
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as the black strings can be placed at the singularity of
the interior region of the black string solution and argued
that their modes stretch from the singularity out to the
horizon.

When D-branes intersect on a topologically non-trivial
manifold, the twistings of their normal bundles yield chi-
ral anomalies in their worldvolume field theories which in-
duce anomalous couplings of the D-brane gauge and grav-
itational fields to the RR tensor potentials [8]–[10]. The
induced Wess-Zumino terms imply that topological de-
fects (such as instantons or monopoles) on the D-branes
carry their own RR charge determined by their topologi-
cal quantum numbers [11]. In the following we will show
that, when one carefully takes into account of the anoma-
lies which occur on intersecting D-branes, while the RR
charge of one D-brane coincides with the RR charge of
black string, the RR charge of the other intersecting D-
brane is of opposite sign.

Following [7], we interpret this effect as placing, at
strong coupling, one D-brane in the interior and the other
in the exterior region of the black string horizon. This
change arises from the fact that the anomalous Wess-
Zumino terms should be properly understood [9] as part
of a total action which treats electric and magnetic poten-
tials and sources on equal footing. This electric-magnetic
symmetry decomposes the total Hilbert space symmet-
rically in terms of the individual D-brane Hilbert spaces.
This leads to an intriguing symmetry between interchange
of the two intersecting D-branes and hence of the interior
and exterior regions of the black hole.1 We shall argue that
this new interpretation leads to the explanation of the dis-
crepancy raised in the black hole/D-brane correspondence
[6]. Indeed, this new picture leads us to consider both su-

1 This symmetry is not to be confused with the S-duality
symmetry of type-IIB superstring theory.



642 D.D. Song, R.J. Szabo: Black string entropy from anomalous D-brane couplings

perobserver’s and outside observer’s points of view and we
will show that, for an outsider observer, this interpreta-
tion effectively perturbs the classical extremal black string
solution to the near-extremal case. The horizon area from
this modified black string solution agrees with the expec-
tation value of the area operator on D-brane Hilbert space.
Thus the proper incorporation of anomalous D-brane cou-
plings sheds new light on the role of observers in the quan-
tum D-brane picture.

We start by briefly reviewing some properties of six-
dimensional black strings in type IIB string theory. The
bosonic action for type IIB supergravity in the Einstein
frame is of the form

1
16πG10

∫
M10

d10x
√−g

(
R − 1

2
(∇φ)2 − 1

12
eφH2

(3)

)
+ . . .

(1)
where the dots denote non-covariant field terms, H(3) is
the RR three-form field strength, φ is the dilaton field, and
G10 is the ten-dimensional gravitational constant which
in string units is given by G10 = 8π6g2

s with gs the string
coupling constant. The black string solution is most eas-
ily constructed on the ten-dimensional spacetime M10 =
T 5 ×R5 with the five-torus T 5 taken to be the product of
a circle S1 (along which the string lies), with coordinate
z and circumference L, and a four-torus T 4 with coordi-
nates yi and hypervolume V . The Cartesian coordinates
of the remaining 4+1 asymptotically flat non-compact di-
rections are denoted by (xi, t). In the limit L � V 1/4 the
extremal black string solution in 5+1 dimensions reduces
to the 4+1 dimensional Reissner-Nordström black hole of
type IIB superstring theory.

In light-cone coordinates u ≡ t − z, v ≡ t + z, the
classical six-dimensional exterior and interior black string
solutions of the coupled Einstein equations which follow
from the action (1) are [7]

ds2
ext = h

1/4
1 h

3/4
5
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du

h1h5
(−dv + Kdu)

+
dyidyi

h5
+ dxidxi
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(2)

ds2
int = h
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3/4
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h5
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]
(3)

e−2φ =
h5

h1
(4)

H(3)νuv = h−2
1 ∂νh1 , H(3)ijk = − εijkl∂xl

h5 (5)

where the harmonic functions are

h1 = 1 +
r2
1

r2 , h5 = 1 +
r2
5

r2 (6)

for the exterior metric (2) and

h1 = −1 +
r2
1

r2 , h5 = −1 +
r2
5

r2 (7)

for the interior metric (3), with r2 = xix
i. The horizon lies

at the coordinate singularity r = 0 in (2, 3) and the time-
like curvature singularity lies at either r = r1 (if r1 < r5)
or r = r5 (if r5 < r1). The constants r1 and r5 determine
the electric and magnetic charges of the black hole with
respect to the RR three-form field strength by

Q1 ≡ V

(2π)6gs

∫
S3

eφ ∗6 H(3) =
V r2

1

(2π)4gs
(8)

Q5 ≡ 1
(2π)2gs

∫
S3

H(3) =
r2
5

gs
(9)

where S3 is a three-sphere and ∗6 the Hodge dual in the
six-dimensional spacetime R5 × S1. With this normaliza-
tion the charges Q1 and Q5 are integers. For simplicity, we
will consider only the homogeneous case where K = p/r2

with p the momentum of the black hole. Note that, aside
from the forms of the harmonic functions, the only dif-
ference between the exterior and interior solutions is the
change in sign of the dudv term in the metric.

By putting a u dependence on the momentum p ≡
p(u), one can add travelling waves [12], i.e. waves moving
along the string, since p(u) then changes the momentum
density along the string. For extremal black holes, there
are only left-moving modes, and therefore p depends on u
but not on v. The corresponding horizon area is

A = 2π2r1r5V

∫ √
p(u) du . (10)

When p ≡ (2π)6g2
sN/L2V is constant, with N the number

of modes, (10) yields the familiar extremal Bekenstein-
Hawking entropy

Se =
A

4G10
= 2π

√
Q1Q5N (11)

of the 4+1 dimensional black hole.
Being sources which carry RR charge, the electric and

magnetic charges can be induced by superposing Q1 D-
string and Q5 D-fivebrane sources with worldvolumes M1
and M5 lying in the (t, z) plane R1 × S1 and the 5+1 di-
mensional (t, z, yi) space R1 × S1 × T 4, respectively. The
D-strings and D-fivebranes intersect along the worldsheet
of the string. Since the D-strings wind Q1 times around the
S1 and the D-fivebranes wind Q5 times around the whole
T 5, the effective string wraps Q1Q5 times around the com-
pact z-direction. This feature is the key to counting the
entropy (11) using D-branes. Using the positive energy
theorem for black holes, it is argued in [7] that outside the
horizon, BPS D-brane solutions with positive charge and
energy density are static whereas D-branes with negative
charge and energy density are unphysical. Inside the hori-
zon, the situation is opposite in that it is the negatively
charged D-brane or anti-D-brane which is static (and has
positive energy density).

The comparison of black hole states to quantum config-
urations of the D-branes can be made by constructing an
area operator for the black string on the D-brane Hilbert
space HD [6]. This is achieved by defining a momentum
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operator and plugging it into (10). We will consider the
case when

√
p � r1, r5. The ensemble of homogeneous

black string states contains those states which lie on a sin-
gle string of tension 1/2πgsQ5 and within a length scale
L̃ ≡ Q1Q5L. The string can be described by a free world-
sheet σ-model for a single bosonic field X, which in the
limit L � V 1/4 describes the excitations of the D-branes.
Then the momentum density along the string can be writ-
ten as T++ = (∂+X)2/2πgsQ5, whose mode expansion is
given by ∂+X = (

√
2π2gsQ5/L̃)

∑∞
m=−∞ αme−2πimσ+/L̃

with [αm, αn] = mδ−m,n. Since the differences between the
worldsheet coordinate σ+ and the spacetime coordinate
u are integer multiples of L due to the string wrapping
around the compact direction Q1Q5 times, it follows that
the parameters of the black string solution can be identi-
fied with quantum fields on the effective string worldsheet
through the momentum operator

p(u) =
1
L̃

∞∑
l=−∞

ple
−2πilu/L̃ (12)

where

pl =
2π2g2

s

V L̃

Q1Q5∑
k=1

∞∑
n=−∞

e−2πiklL/L̃ : αl−nαn : . (13)

Note that in (13) the index k runs from 1 to Q1Q5.
Using the equipartition theorem, it can be shown [6]

that the difference between the expectation value of the
area operator (10) in HD and the area of the classical
stationary black string can be estimated by evaluating
the quantity

∑
k 6=0

<:pkp−k:>
<:p2

0:>
. The quantum fluctuations

in the longitudinal momentum yield the deviation

∑
k

<: pkp−k :>
<: p2

0 :>
∼ 1

Q1Q5
(14)

from the area of the stationary black hole [6]. Therefore
for large winding number Q1Q5, the two areas can match.
But generally there is always a deviation between the clas-
sical horizon area and the expectation value of the area
operator on HD which leads to an entropy counting dif-
ference

∆S

Se
∼ 1√

Q1Q5
(15)

between the classical and (quantum) D-brane approaches.
In the following we will describe an origin for the dis-

crepancy (15). D-brane field theory plays a vital role in
the counting of statistical entropy for a quantum descrip-
tion of black holes at strong coupling [2]–[4]. At low en-
ergy, these field theories have both gauge and global sym-
metries. Anomalies arise due to the chiral asymmetry,
with respect to the global R symmetry, of massless Weyl
fermion fields on the intersection of D-branes. These
anomalies can be compensated for by the anomalous vari-
ation of the classical D-brane actions. In [8]–[10] it was
shown that the classical variations of Wess-Zumino actions
for the D-branes cancel the Yang-Mills and gravitational

anomalies as well as the anomalies associated with global
R symmetries. Let us now quickly describe how this works.

The low-energy dynamics of the configuration of Q1 D-
strings and Q5 D-fivebranes, each with infinitesimal sep-
aration, are described, respectively, by supersymmetric
field theories on the worldvolumes M1 and M5 which have
U(Q1) and U(Q5) gauge symmetries [1,13]. The anoma-
lous gauge variation on the intersection of D-strings and
D-fivebranes on the effective string worldsheet M1 ∩ M5
can be written as [8]–[10]

2π

∫
M10

4M1 ∧ 4M5 (16)

∧
(

ch(F1) ∧ ch(−F5) ∧ Â[T (M1) ∩ T (M5)]
Â[N(M1) ∩ N(M5)]

)(1)

where the delta-function supported Poincaré dual form
4Mi , of degree 10−dimMi, is the de Rham current of Mi,
i.e.

∫
Mi

Z ≡ ∫
M10

4Mi ∧ Z. If N is the leading constant
part of the closed gauge-invariant form Z ≡ N + dZ(0),
then Z(1) denotes its corresponding Wess-Zumino descen-
dent defined by the first-order gauge variation δgZ

(0) ≡
dZ(1) of its secondary characteristic. The tangent bundle
T (M10) of the total space decomposes locally as T (Mi)⊕
N(Mi), with N(Mi) the normal bundle of the embedded
submanifold Mi, and Â denotes the Dirac genus. F1 and
F5 are Hermitian U(Q1) and U(Q5) gauge field strengths,
respectively, and

ch(Fj) ≡ trQj
exp

iFj

2π
= Qj+ch1(Fj)+ch2(Fj)+. . . (17)

are the corresponding Chern characteristic classes in the
fundamental Qj representations of the respective gauge
groups on the D-branes. The anomaly term (17) comes
from the tensor product of the spinor bundles, associated
with the lifting of T (M10) = T (Mi) ⊕ N(Mi), with the
Chan-Paton vector bundles over the D-branes. As shown
in [8], the anomalous zero modes on the intersection of the
D-branes come from the massless excitation spectrum of
the D-brane field theory which consists of Weyl fermions
in the mixed sector Q1 ⊗ Q̄5 and Q̄1 ⊗ Q5 representa-
tions of the gauge group U(Q1)×U(Q5). Since the Chern
characteristic class for the adjoint representation of the
unitary group can be decomposed as ch[U(Qi)Qi⊗Q̄i

] =
ch(Fi) ∧ ch(F ∗

i ) = ch(Fi) ∧ ch(−Fi), the ch(F1) ∧ ch(−F5)
term comes from the mixed sectors Q1 ⊗ Q̄5 and Q̄1 ⊗ Q5
which both contribute equally.

The anomaly term (17) can be cancelled by carefully
writing the constituent bulk D-brane actions in well-
defined forms. The Wess-Zumino part of the low-energy
effective action for the D-brane dynamics has the form

IWZ = −µ

2

∑
i=1,5

∫
Mi

C ∧ Zi (18)

where µ is the D-brane charge, C is the sum of all the
even form-degree RR gauge fields for the type-IIB theory
we are considering here, and Zi are the D-brane sources
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which are invariant polynomials of the Yang-Mills field
strengths and gravitational curvatures on Mi. Denoting
the p-form parts of C and Zi by C(p) and Zi(p), the action
(18) can be written as an integral over the total spacetime
using the de Rham currents as

IWZ = −µ

2

∫
M10

{4M1 ∧ (C(0) ∧ Z1(2) + C(2) ∧ Z1(0)
)

+ 4M5 ∧ (C(0) ∧ Z5(6) + C(2) ∧ Z5(4)

+C(4) ∧ Z5(2) + C(6) ∧ Z5(0)
)}

(19)

where we recall that 4M1 is an eight-form and 4M5 is a
four-form.

However, because of the D-brane couplings, the gauge
fields are not globally-defined as single-valued differential
forms, and (18) should be written more carefully since H,
the total RR field strength, has global corrections to its
local form dC. The appropriate modification is the anoma-
lous D-brane coupling

IWZ = −µ

2

∑
i=1,5

∫
M10

4Mi
∧
(
NiC − H ∧ Z

(0)
i

)
(20)

which coincides with (18) upon integration by parts when
H = dC, but otherwise contains global corrections to the
form (18). The equations of motion which follow from cou-
pling the kinetic term of (1) to the source action (20) are

d(eφ ∗10 H) = µ
∑

i=1,5

4Mi ∧ Zi (21)

where ∗10 is the Hodge dual in the ten-dimensional space-
time M10, and the Bianchi identities are [9]

dH = −µ
∑

i=1,5

4Mi ∧ Z̃i (22)

where Z̃i(l) = (−1)(dim Mi+l+2)/2Zi(l) is the conjugate to
Zi defined by reversing the orientations of the Chan-Paton
and tangent bundles over the D-branes. The gauge varia-
tion of the potential is thus δgC = µ

∑
i 4Mi

∧ Z̃
(1)
i , and

it follows that the gauge variation of the modified Wess-
Zumino action (20) is

δgIWZ = −µ2

2

∫
M10

4M1 ∧4M5 ∧
(
Z1 ∧ Z̃5 + Z5 ∧ Z̃1

)(1)
.

(23)
Therefore with

Zi = ch(Fi) ∧
√

Â[T (Mi)]
Â[N(Mi)]

(24)

Z̃j = ch(−Fj) ∧
√

Â[T (Mj)]
Â[N(Mj)]

(25)

and µ2 = 2π, the variation (23) cancels the anomaly term
(17).

The Bianchi identity (22) follows from the fact that the
anomalous coupling (20) explicitly involves both electric

and magnetic sources and is to be understood as part of an
action which is manifestly electric-magnetic symmetric [9].
As we will now demonstrate, the anomalous action (20)
with this underlying electric-magnetic duality yields new
implications for the quantum descriptions of black holes
in the D-brane picture. We note first of all that the field
strength H in (21, 22) is the sum of all the odd form-degree
RR field strengths for the type-IIB theory. To compare
the physical D-brane charges derived from the anomalous
coupling (20) with those of the black string solution of
(1), we are interested in the three-form component H(3)

of H. We therefore consider two hypervolumes B8 and B4

in M10 whose boundaries are spheres S7 and S3 enclosing
the total D-string and D-fivebrane charge. From (21) and
(22) we have2

∫
B8

d(eφ ∗10 H(3)) = µ

∫
B8

(4M1 ∧ Z1(0)

+4M5 ∧ Z5(4)
)

(26)∫
B4

dH(3) = −µ

∫
B4

4M5 ∧ Z̃5(0) . (27)

The first term on the right-hand side of (26) corresponds
to the physical charge Q1 of the D-strings, while the sec-
ond term is an induced anomaly charge. This latter charge
arises from the fact [11] that RR charge conservation re-
quires the boundaries of the D-string to carry instan-
ton number with respect to the D-fivebrane worldvolume
gauge field. The right-hand side of (27) represents the
physical charge Q5 of the D-fivebranes.

For the D-string and D-fivebrane worldvolumes we
have Z̃i(0) = Zi(0). It follows from (24), (17) and the fact
that the constant part of the Dirac genus is 1 that

Q1 = µQ1 (28)
Q5 = −µQ5 . (29)

We see that, for µ = +
√

2π, the RR charge of D-strings
coincides with (8) while the RR charge of D-fivebranes is of
opposite sign to (9).3 This would seem to contradict that
D-branes, at weak coupling, carry the same RR charge as
that of the black hole.

The crucial minus sign which appears in (29) comes
from the electric-magnetic duality property of the anoma-
lous Wess-Zumino coupling (20). The total (non-covariant)
explicitly duality symmetric action IBE +IWZ comes from
writing the field strength term in the supergravity action
(1) as [9,14]

IBE = − 1
384πG10

∫
M10

eφ
(
B(3) ∧ E(7) + B(7) ∧ E(3)

+B(3) ∧ ∗10B(3) + B(7) ∧ ∗10B(7)
)

(30)

2 Note that here, in contrast to the RR charges (8) and (9)
which are defined in the six-dimensional black string frame, we
equivalently define D-brane charge in a ten-dimensional frame.

3 For µ = −√
2π, RR charge of D-strings would have oppo-

site sign to (8)



D.D. Song, R.J. Szabo: Black string entropy from anomalous D-brane couplings 645

where we have decomposed H(p) = E(p) +B(p) for p = 3, 7
in terms of its components E(p) with a temporal index
and its components B(p) involving only spatial indices
on M10. Thus when one interprets the D-string and D-
fivebrane fields as ten-dimensional electromagnetic duals
of one another, the physical couplings of the black string
change. This symmetry is necessary to cancel the anoma-
lous fermionic zero modes (17) via a change of orientation
of the bundles over one of the intersecting D-branes.

Generally, the construction of explicitly electric-
magnetic symmetric quantum field theories involves aug-
menting the Hilbert space so as to include two indepen-
dent gauge potentials where one is the physical field and
the other is the unphysical dual field [14,15]. In the present
case the two potentials are associated each with the D-
string and D-fivebrane in M10, and corresponding sources
Zi and Z̃i, which in turn means that the full D-brane
Hilbert space to be considered is the tensor product

HD = HD1 ⊗ HD5 (31)

of independent D-string and D-fivebrane Hilbert spaces.
Since the Hilbert space of the exterior and interior re-
gions of the black hole is relevant only to a superobserver,
one could associate the unphysical dual field with the in-
terior region of the black hole for an outside observer, i.e.
one of the intersecting D-branes is associated with exte-
rior while the other is associated with interior region of
black string. It was argued that [7] in placing D-branes in
static equilibrium on the extremal black hole, outside the
horizon the positively charged D-brane is static whereas
inside the horizon the negatively charged D-brane is static.
Therefore, if we consider that, at strong coupling and for
µ = +

√
2π (which we henceforth assume), the D-string

is placed in the exterior while the D-fivebrane should be
interpreted as lying on the interior of the black string hori-
zon, then this resolves the sign difference between the RR
charges (29) and (9).

The decomposition of the Hilbert space (31) can then
also be thought of as yielding Hilbert spaces HD1 for the
exterior and HD5 for the interior regions of the quan-
tum black hole. This augmented Hilbert space of exterior
and interior regions can be of use only to a superobserver
[5]. From a superobserver’s point of view, both the D-
string and D-fivebrane are positively charged and only left
moving momentum modes exist. This augmented Hilbert
space also gives a remarkable manifestation of the electric-
magnetic symmetry as an interior-exterior region symme-
try of the black string. The horizon, where the D-branes
intersect, then corresponds to projecting the Hilbert space
(31) onto only one component representing the physical
(duality non-symmetric) solution in which both D-branes
are placed in the same region. With this projection onto
“physically observable” states (i.e. those relevant to an
outside observer), the RR three-form field strength and
its dual are related by H(3) = − ∗10 H(7) [9], which gives
E(7) = − ∗10 B(3) and E(3) = − ∗10 B(7) in (30) leaving
only one set of electromagnetic tensor fields for the phys-
ical black string solution.

This interpretation also modifies the momentum oper-
ator (12) on the D-brane Hilbert space, which with respect

to the decomposition (31) can be considered as a func-
tion p(u1, u5) of two variables u1 and u5 representing the
worldsheet coordinates of the D-string and D-fivebrane,
respectively. The corresponding mode expansion (12,13)
can be rewritten as

p(u1, u5) =
1
L̃

∞∑
l1,l5=−∞

(pl1 ⊗ pl5)e
−2πi(l1u1+l5u5)/L̃ (32)

where

pl1 =

√
2π2g2

s

V L̃

Q1∑
k1=1

∞∑
n1=−∞

e−2πik1l1L/L̃ : α
(1)
l1−n1

α(1)
n1

:

pl5 =

√
2π2g2

s

V L̃

Q5∑
k5=1

∞∑
n5=−∞

e−2πik5l5L/L̃ : α
(5)
l5−n5

α(5)
n5

: (33)

and the modes α
(1)
n1 and α

(5)
n5 act on the Hilbert spaces

HD1 and HD5, respectively. Note that the index k1 runs
from 1 to Q1 for pl1 while k5 runs from 1 to Q5 for pl5 .
The modification (32,33) of (12,13) does not change the
deviation (14).

Unlike a superobserver, an outside observer, where
only the exterior metric is relevant, sees branes and anti-
branes. Moreover, the momentum pl5 corresponding to Q5
is no longer left moving if the D-fivebrane intersects as
an anti-brane. Instead it is right moving, i.e. u5 ≡ v.
From the outside observer’s point of view, the classical
six-dimensional black string solution, with a new inter-
pretation of the momentum operator in (32,33), i.e. with
the D-fivebrane as an anti-brane and with right as well
as left moving momentum, represents the non-extremal
case.4 The outside observer therefore sees the extremal
horizon as if it were a non-extremal one. The correspond-
ing Bekenstein-Hawking entropy is [3,16]

Sn−e = 2π
√

Q1Q5

(√
N1 +

√
N5

)
(34)

where N1,5 is the number of left,right moving modes. In
the absence of right moving modes, (34) becomes the en-
tropy (11) of the extremal black string. If the number of
right movers is small, then the perturbation away from a
purely left-moving extremal background is small. When a
small number δN5 of right moving oscillations is added,
the change in entropy from the extremal case is

∆S

Se
=

√
δN5

N
(35)

where N ≡ N1 −N5. In terms of the mass change δM due
to the transition to near-extremality, we have [4]

4 Although we have only considered left and right mov-
ing momentum modes and argued that (32) corresponds to
the non-extremal case, it seems that the BPS supersymmetric
properties of the configuration are also different for a super-
observer and an outside observer. We leave the detailed study
of BPS bound state configurations for these two observers for
future research.
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∆S

Se
∼
√

δM

Me
(36)

where Me is the mass of the extremal black string.
The mass gap between the near-extremal and the ex-

tremal black string is [4]

(∆p)2

Me
≡ δM ∼ 1

Q1Q5
. (37)

The entropy difference (36) thus coincides with the de-
viation (15) caused by the quantum fluctuations of the
momentum of the stationary black string. As pointed out
before, the decomposition (32) of the momentum opera-
tor into two independent components does not change the
result (14). It is the area from the classical black string
solution that is modified so as to include a right mov-
ing momentum, yielding an identical entropy deviation in
both the classical and D-brane pictures. Therefore the dis-
crepancy in the black hole/D-brane correspondence can be
explained from the fact that, unlike a superobserver, the
outside observer does not have access to the interior of
black holes. In other words, the discrepancy results from
the projection of the augmented electric-magnetic sym-
metric Hilbert space onto physically observable states.

It would be interesting to see how the above interpre-
tation of the D-brane Hilbert space based on anomalous
couplings and electric-magnetic symmetry can be used to
describe other issues in black hole physics. For instance,
in [17] it is argued that pure quantum states do not form
black holes, which suggests the need for quantum decoher-
ence in the black hole description. What we have shown
above suggests that there are interactions between the in-
terior and exterior regions of a black hole at the hori-
zon. Therefore it seems plausible to interpret the interior
of a black hole as the environment or external source in
quantum decoherence. The quantum corrections, due to
the external sources, to the entropy of four-dimensional
Einstein-Yang-Mills black holes are described in [18]. Fur-
thermore, the decomposition (31) of the Hilbert space of
the quantum field theory into two independent compo-
nents is the natural setting for the noncommutative geom-
etry description of duality symmetries [15]. The approach
above may therefore also be relevant to the noncommuta-
tive short-distance structure, which is inherent in D-brane
field theory [13], of black hole spacetimes.
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